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Introduction

XPLORATION and utilization of space, both near Earthand within the solar system, and eventually, interstellar,
is a continuing national interest. A major key to the effective

utilization and exploration of space is an efficient, convenient,
and cost-effective launch system into low Earth orbit. While
major strides are being made in payload miniaturization,
launcher performance/cost will remain a critical issue. One
set of options for more effective launchers involves air-breath-
ing propulsion, perhaps operating over portions of the ascent
in a "combined cycle" mode. A particularly critical compo-
nent of hypersonic air-breathing propulsion systems is the
combustor, which is, historically, heavy due to requisite size/
length and high aerodynamic and thermal loading and re-
sponsible for major portions of the total engine losses. One
of the prime determinants of combustor efficiency is the dis-
tance required to "mix and burn," and therefore, effective

mixing enhancement (including adequate fuel penetration)
can provide a significant contribution to the viability of air-
breathing hypersonic propulsion.

The penetration and mixing enhancement problem for hy-
personic air breathers must obviously be worked within the
context of overall engine efficiency and thrust production.

There are a multitude of extant mixing enhancement tech-
niques,'.2 the problem is obtaining a resultant net performance
enhancement when the additional losses associated with the

mixing enhancement approach are accounted for. At the higher
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speeds (e.g., M > 12) the thrust imparted to the vehicle from

the fuel injection process is increasingly important, a requiring

nearly parallel injection, a process that is not conducive to
rapid mixing. The high Mach number end is also increasingly

sensitive, in terms of net thrust, to losses of all types, miti-

gating against the use of instream injection struts with their

high wave drag and heat transfer losses. The mean shear

between the fuel jet and local stream flow becomes small in
the Mach 12-15 range due to the high effiux speed of the

regeneratively heated hydrogen fuel, further reducing the in-

nate shear-induced mixing, but reducing the "convective Mach
number." Therefore, in terms of criticality and payoff, the

high Mach number range is the most important (air-breathing)
regime for mixing enhancement.

The overall mixing problem in the combustor is nonsimple.

The mean flow entering from the inlet is highly three dimen-
sional and replete with unsteady shock and expansion waves,

thick turbulent boundary layers, and embedded vortical en-
tities. The combustor itself contains multiple fuel injection
sites whose individual character could be different and whose

three-dimensional flowfields interact with each other and with

the incident flow, along with various types of possible front-
side cooling-induced flow phenomena. These flow features

and their interacting combinations are quite different from

the simplex flows employed in most (laboratory, shear-dom-

inated) mixing enhancement studies.

Mixing enhancement for engine performance improvement
is the totality of increased micromixing (from small-scale tur-

bulence/molecular mixing), increased "contact area" between

air and fuel in a global sense (from "stirring" and multiple

injection sites), and increased "path length" (e.g., from swirl).

Known parameters having a first-order effect upon turbulent
shear layers, and therefore, candidates for incorporation into

synergistic mixing enhancement schemes, include pressure gra-

dients, flow curvatures, energy release, proximity to transition/

Reynolds number, shock/expansion waves, three-dimensional
mean flow details, compressibility, adjacent surfaces, and stream

fluctuation fields. Fuel distribution is also influenced by injection

location(s) and approaches and action of "inviscid" wave sys-
tems. From these considerations an approach to scram jet mixing

enhancement can be suggested that involves synergistic utili-

zation of pre-existing flow features along with stirring and low

loss turbulence enhancement approaches, all in the context of

injection techniques consistent with achieving the required fuel
coverage/penetration and fuel thrust. In particular, utilization

should be made of the initiation and encouragement of innate
instabilities that affect flows that are already turbulent (e.g., the

Gortler instability, etc.).
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Hypervelocity Mixing Enhancement Suggestions

The current "best bet" for mixing enhancement in the high

hypersonic air-breathing combustor case is the addition of
organized longitudinal vorticity, possibly via raised ramp in-
jectors?- _'_A summary of currently envisaged and potential
benefits of this approach include the following:

1) Increased fuel-air interfacial area, if the fuel-air is en-
trained into the vortex.

2) Longitudinal vorticity-induced mixing enhancement via
Rayleigh/curvature destabilization. 14-_ This turbulence en-
hancement mechanism is relatively independent of Mach

number, is effective over long downstream distances, and

requires unstable velocity and density gradients. If not spe-

cifically tailored for destabilization, this mechanism can re-
duce, rather than increase mixing.

3) Increased penetration via mutual (multiple) vortex in-
duction/interaction. _,_.2.,

4) Significant realization/utilization of fuel thrust.
5) Possibility of major localized turbulence enhancement

through vortex bursting via interaction with existing (inlet/
injection-generated) wave systems. 2_-23

6) Possible additional destabilization via multiple vortex
interactions 24 and additional flow curvatures induced by such
interactions._,._-2,J

7) Facilitates utilization of incident (especially boundary-

layer) turbulence fields via roll-up into vortex structures dur-
ing formation process? "-37

Several longitudinal vorticity generation techniques/ap-
proaches are available including (from weak-to-strong cir-
culation) Taylor-Gortler instability, jet injection(s), 3s'3"

baroclinic torque (especially from shock interaction), 4° and
discrete physical vortex generators from small-to-large scale

(e.g., ramps, 4- __ and mixing lobes.41-47). Organized vortic-
ity can be generated, using these techniques, in the incident
combustor flow within the fuel jet 4_-'_4 or due to the fuel
injection process(es). 3_-3'_'55Additional longitudinal vortic-
ity generation approaches specific to the fuel jets include
circular-to-elliptic internal (longitudinal) geometry change _

and jet swirl. Except for the Taylor-Gortler instability,
these longitudinal vorticity generation techniques are based
upon generation of transverse pressure gradients. The "'ap-
proaches of choice," at least thus far, for the high hyper-

sonic case are "'swept ramps" and angled jet injection with

secondary use of baroclinic torque. Up to now there has
been little use of the various physics and synergisms allowed
by the presence of multiple/interacting injectors/vortices,
the exception being Ref. 56.

There are several obvious drawbacks/losses/problems as-

sociated with the generation and use of organized longitudinal
vorticity for mixing enhancement. These include localized in-
terference heat transfer, degradation of film cooling due to
vortex interaction, thrust loss to cross-plane momentum, and

ramp (shock/base pressure) drag and heat transfer losses.
The following approaches may increase the effectiveness of

the longitudinal vorticity approach to combustor mixing en-

hancement for the high Mach number case:
11 Utilization of favorable interference between multiple

injection-induced flowfields, e.g., wave drag reduction via
favorable wave interference (side-to-side and across the duct)
in the manner of the "Busemann Biplane," and vortex-vortex
interaction to create "'up-welling"/enhanced penetration (may
allow reduced ramp size/losses).

2) Design for Rayleigh destabilization (especially within the
vortex flows), may require injection and entrainment of fuel
into the vortex systems during their formation process(es).
Simplistically, requires negative gradients of velocity/density
with increasing radius within the vortex.

3) "Unwinding" of the organized vorticity via interaction
with oppositely signed vorticity prior to exit of combustor to
minimize thrust loss due to cross-stream velocity fields. 57 Also,
incorporation of other (including nonlinear, three-dimen-

sionat) instability modes that are effective in a turbulent en-
vironment.

4) Vortex generation processes designed to facilitate en-
trainment of wall boundary-layer turbulence into the mixing

process.
5) Incorporation of longitudinal vorticity generation within

the fuel streams.

6) Optimized number and location of injection sites and

types for multiple metrics including favorable interactions,
increased interfacial area, penetration/fueling, and overall
metrics such as thrust level and combustor weight/complexity.

7) Utilization of fuel underexpansion as an aid to penetra-
tion and overall efficiency? s

The parameter space for an optimized combustor (as op-

posed to an injector) is, unfortunately, immense. Variables
include scale(s)/locations/numbers/types of vortex generation
sites as well as their relationship(s) to fuel injection sites/

injector types and the multiplicity of their mutual interactions.

The applicable metrics are also nonsimple and include weight,
size, heat transfer, friction, and wave loss reduction as well

as minimization of design complexity/cost, all in the context

of thrust/l_ I, maximization, operability across the speed range,
and incorporation of integral rocket/combined cycle features
at even higher speeds. Obviously, the problem of mixing en-

hancement/combustor design for this high-speed case has little

relationship to conventional laboratory studies of single en-

hancement techniques applied to two-dimensional shear-driven

mixing.
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